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It is known that stationary vortex flows (acoustic flows) can occur in the field of 
a sound wave around different obstacles. This phenomenon was investigated in a number of 
papers, part of which is examined in the surveys [1-3], where the most intent attention 
was paid to flows near bodies of regular geometric shape (plane, tube, cylinder, sphere) 
in a standing wave field without taking account of heat conduction. The influence of heat 
conduction on the origination of flows in a boundary layer under oblique incidence of a 
travelling sound wave on a plane is examined in [4]. 

The acoustic flows in a boundary layer originating in a real medium under the action 
of a plane travelling sound wave incident along the axis of rotation of a prelate spheroid 
are determined in this paper. 

The solution for the acoustic flow velocity can be obtained from the fundamental equa- 
tions of motion of a viscous fluid by successive approximations. It has the form [i] 

[Lv2V2 : VP2 - -  F; (1 )  

F = --PO <(VlV)Vl + VlVVl>, (2 )  

where V2 is the acoustic flow velocity, P2 is a small correction to the pressure in the 
sound field, is the force, averaged with respect to time, that is found in a field of 
first order of smallness V1, corresponding to the solution of the equations of motion of 
a viscous heat conducting fluid in a linear formulation, P0 is the density of the medium 
not perturbed by sound, and ~ is the dynamic viscosity coefficient. 

Let a plane sound wave with the velocity potential ~p (Fig. i) be incident along the 
axis of rotation of a prelate absolutely stiff spheroid. -We assume the spheroid conducts 
heat perfectly. Let us examine the case when the wavelength is much less than the spheroid 
dimensions. Let us determine the expression for V2 We will seek the solution in the 
boundary layer of the spheroid where the influence of the viscous and thermal waves is 
most substantial. Only the exposed domain is subject to study since under our assumption 
there is no scattered field in the shadow. 

The complete system of equations of motion of a continuous medium describing small 
perturbations for the steady vibration mode with time dependences exp(-imt) can be reduced 
to a system of Helmholtz equations [5] 

A,~ + k ~  o, A,~ + ~:i~,~ = o, A o  + k~O = 0,, (3,) 

where ~, ~2, ~ are, respectively, the longitudinal, thermal, and viscous wave potentials ; 

V~ = V~ + V • O. (4 )  

Here ~ = ~i + ~2; ~i = ~p + ~s; ~s is the scattered wave potential. In the case when the 
viscosity and heat conduction coefficients are small, k11 ~ m/c, k12 ~ ~(i + i), k 2 ~ 6(1 + 

i), ~ = /w/2x0, ~ = /m/2~ (m is the vibration frequency, c is the sound speed, • is the 

thermal diffusivity coefficient, and v is the kinematic viscosity coefficient). We seek 
the solution of the system (3) by the local field method by assuming that the acoustic 
field of a small neighborhood of a surface point depends only on the incident wave and the 
geometric shape of the section of the surface. We select the~neighborhood of a surface 
point M such that the thickness of the domain 6 would be much less than its lateral dimen- 
sions �9 (6 ~ ~). Here 6 = max {~-i; 6-i}. Let us use a local curvilinear orthogonal system 
of coordinates u, v, w. We then write the system (3) in the form 
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a~ + a---c- + (• + •  + khqh = O, 

a% + (• + • ao 
o'---~ ~ + k~O = O~ 

w h e r e  • = ( a b ) - 2 ( , a 2 c o s 2 O  + b 2 s i n 2 O )  3 /2  and z~ = ( a 2 c o s 2 8  + b 2 s i n 2 O )  1 /2  x 
the curvatures of points of the surface. 

The symmetry of the problem (~l = ~z( u, w), ~2 = ~2( u, w), O =O(u, v)ev) as well 
as the fact that the sound wavelength was selected as the characteristic length I (l >> x) 
were taken into account in deriving the system (5) and all terms of the order of (6/I) = 
were discarded. 

The boundary conditions for the solution of (5) have the form 

(5) 

(b2sin20) -z are 

V:~ ouc?~ ama<b • w=o = O, 

= ~  :~-Iw=o=O, T=~-~--y  =0. (6) 

Here T is the acoustic temperature of the medium, ~' is the coefficient of temperature ex- 
pansion of the medium, and ~ = Cp/C V. 

We seek the solution of (5) in the form of plane waves. If the incident wave poten- 
tial in the local coordinates is ~p = exp [i(klu sin 8 -- kzw cos 8 - ~t)], where k z ~ kzz - 

(i/2)(~u + ~v)cos 8, then valid for the scattered wave potentials is ~s = A exp [i(klzu u + 

klzw w - mt)], 42 = B exp [i(k12u u + kl2w w - ~t)], ~ = C exp [i(k2uu + k2ww - ~t)] [A, B, 
C are the wave amplitudes found from the boundary conditions (6)]. Here, according to the 
Snell law on the equality of the phase rates of the incident and scattered waves, k11 u = 

kz2 u = k2u = klsin 8 and the expressions kzz w = kzzcos8 + (i/2)(~u + z~)(l + sin28), k12 w = 

kl2 + (i/2)(Xu + ~p), k2w = k 2 + (i/2)(x u + ~o) satisfy the dispersion equations correspond- 
ing to the system (5). 

It should be noted that this solution is not suitable at the pole P of the spheroid 
where ~ becomes infinite. Now, by finding ? I from (4), it is possible to determine V 2 . 
Using the fact that we seek the solution of the problem in a thin boundary layer, we will 
neglect the terms Vp2 in (I), as is done in [4]. After finding the force F from (2) we 
see that its tangential component is much greater than the normal (F u ~ F w) as it should 
be according to boundary layer theory [1-4]. Then F = Fu(u , w)e u (e u is the direction 

of the coordinate axis u). Writing the flow velocity V2 = Va(u, w)e u is valid analogously, 

and exactly as the force, will be directed along the u axis. 
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Taking account of the above-mentioned assumptions, we integrate the system of equa- 
tions (i) and (2) with the boundary conditions Vulw= 0 = 0, aVu/aWlw ~ = 0. Then we ob- 
tain for the acoustic flow velocity 

V 2 = ] exp [(• + • 0 cos Oul{exp [p(i --  l )w]  - -  t }  + c  .c . ,  (7) 

where c.c. denotes the complex conjugate, 

(I + 

] = [J2C [(k~ + i 2 .... cos0 c o s 0 + . 4  k n c o s 0 -  
Mu -~ ~v - -v - )  

Let us note that the value found for V 2 is the mean velocity over several periods 
that the particles of the medium passing through a given point have, i.e., the velocity 
from the Euler point of view. In-fact, we deal in experiments with the particles them- 
selves and the velocity here is understood in the Lagrange conception. Consequently, to 
determine the mass flux the transport velocity V T = <(~Iv)VI> is introduced (~i is the 

vector of particles in the sound wave, ~1=[j V1dt~.j In displacement our case 

[ (  / VT = 5 exp [(• + • sin 0 cos 0u] kn --  ~ ---"5--- cos 0 sin 0 + 

( "•215 ] ~ c e x p  l) w] + A  kn  cos 0 + ~-- -5- - )  (l + sin~ 0 ) [-- [~(i + + c . c .  

(8) 

The upper bar denotes the complex conjugate. 

Therefore, the mean velocity of the mass flux is U = V 2 ~ VT. The acoustic flow velo- 
cities were computed by means of the analytic expressions (7) and (8) obtained for differ- 
ent spheroid configurations and sound wave frequencies when air is the containing medium. 
The results of the numerical computations are presented in Figs. 2 and 3 (the incident wave 
frequency is 1 and 5 MHz, respectively), where the distribution of the velocity U is shown 
at distances of one viscous wavelength from the surface as a function of the angle 8 be ~ 
tween the normal of the spheroid and the direction of wave incidence. The curves i-5 are 
constructed for spheroids with minor semi-axis 1 cm and major semi-axes i, 2, 3, 4, 5 cm. 
As is seen from the graphs, the flow velocity grows considerably as the incident wave fre- 
quency increases. Vortex displacement towards the axis of rotation occurs as the prolate- 
ness of the spheroid increases. Analogous qualitative results are obtained for an ellip- 
tic cylinder in [6]. 
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Let us note that (7) and (8) are obtained with error (611) 2. Here (61L) 2 = []/T---~/2~c] ')- k r c o /  co j 

2~%2 �9 
T h i s  e r r o r  would  be o f  t h e  o r d e r  o f  10 - s  f o r  t h e  sound  wave f r e q u e n c y  v a l u e s  and 

t h e  c h a r a c t e r i s t i c s  o f  t h e  c o n t a i n i n g  medium s e l e c t e d  f o r  t h e  n u m e r i c a l  c o m p u t a t i o n s .  The 
c o m p u t a t i o n s  were  p e r f o r m e d  on t h e  e l e c t r o n i c  c o m p u t e r  ES 1033 w i t h  t h e  same a c c u r a c y .  
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